Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chris Dockendorff, Mark
 Lautens and Alan J. Lough*

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.129$
Data-to-parameter ratio $=10.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,4-Dimethyl-6-phenyl-8-oxabicyclo[3.2.1]-octan-3-one

The asymmetric unit of the title crystal structure, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$, contains two independent molecules which have essentially the same conformation. Two independent one-dimensional chains are formed via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A further single weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction links the two types of chain, forming extended tapes running in the a-axis direction.

Comment

The Rh^{I}-catalysed asymmetric ring-opening of oxabicyclic alkenes with boronic acid nucleophiles was reported several years ago (Lautens et al., 2002). During efforts to expand the scope of this reaction, we discovered that, in some cases, unopened addition products are obtained, such as in the synthesis of the title compound, (2). The product is thought to occur via a 1,4-rhodium shift on to an adjacent aryl group, a mechanism supported by similar reactions performed in $\mathrm{D}_{2} \mathrm{O}$, which led to deuterium incorporation on the aryl group (Dockendorff, 2006). Oguma et al., (2000) have reported a related pathway in the Rh^{I}-catalysed alkylation of phenylboronic acid with norbornene.

Received 10 March 2006 Accepted 15 March 2006

A view of the asymmetric unit of (2) is shown in Fig. 1. The two molecules in the asymmetric unit (A and B) have essentially the same conformation. Table 1 lists the pertinent torsion angles, which reflect the differences of the molecules with respect to any slight rotation of the phenyl ring about the C6C10 bond. In the crystal structure, two independent onedimensional $C(4)$ chains (Bernstein et al., 1995) are formed via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2), connecting molecules related by unit-cell translations in the a axis direction. A single weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links both types of chain, giving rise to fused $R_{4}^{4}(20)$ rings forming extended tapes in the a-axis direction (Fig. 2).

Experimental

A 5 ml flask was charged with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(\mathrm{COD}=1,5$-cyclooctadiene) ($8.2 \mathrm{mg}, 0.017 \mathrm{mmol}$), (R)-(S)-PPF-P($\left.{ }^{t} \mathrm{Bu}\right)_{2}\{(S)-1-[(R)-2-$ diphenylphosphino)ferrocenyl]ethyldi-tert-butylphosphine)\} (from Solvias Inc.; $18.2 \mathrm{mg}, 0.033 \mathrm{mmol}$), phenylboronic acid (49 mg , 0.40 mmol) and the oxabicycle, (1) (prepared according to Lautens \& Bouchain, 2002). A stirrer bar was added and the flask was sealed and

Figure 1
View of the two molecules $(A$ and $B)$ in the asymmetric unit of (2), showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Figure 2
A partial packing plot (Spek, 2003) of (2), showing hydrogen bonds as dashed lines. The chain of molecule A is on the right-hand side. The hydrogen-bonded tapes propagate in the a-axis direction.
flushed with N_{2} before distilled tetrahydrofuran (2 ml) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (5 M) in $\mathrm{H}_{2} \mathrm{O}\left(34 \mu \mathrm{l}, 0.17 \mathrm{mmol} \mathrm{Cs} 2 \mathrm{CO}_{3}\right)$ were added by syringe. The reaction was stirred for 20 h , after which time thin-layer chromatographic analysis ($25 \% \mathrm{EtOAc} /$ hexanes) indicated the reaction was complete. The solvent was then evaporated and the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred on to a glass column packed with silica gel ($1.3 \mathrm{~cm} \times 20.3 \mathrm{~cm}$) and eluted with 5-10\% EtOAchexanes. Both opened and unopened phenyl adducts were well
separated, with the unopened product, (2), eluting first (yield 78\%). X-ray quality crystals were obtained by dissolving (2) in hexanes and storing in a vial in a 258 K freezer.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=230.29$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.5808$ (3) A
$b=14.8272(6) \AA$
$c=30.3806$ (17) \AA
$V=2513.9(2) \AA^{3}$
$Z=8$
$D_{x}=1.217 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker-Nonius KappaCCD diffractometer
φ scans and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
$T_{\text {min }}=0.743, T_{\text {max }}=0.988$
10473 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 10473
reflections
$\theta=2.7-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, colourless
$0.27 \times 0.20 \times 0.17 \mathrm{~mm}$

3223 independent reflections
1912 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-16 \rightarrow 18$
$l=-39 \rightarrow 39$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0596 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.129$
$S=1.00$
3223 reflections
311 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 7 A-\mathrm{C} 6 A-\mathrm{C} 10 A-\mathrm{C} 15 A$	-53.1 (4)	$\mathrm{C} 7 B-\mathrm{C} 6 B-\mathrm{C} 10 B-\mathrm{C} 15 B$	-53.9 (4)
$\mathrm{C} 7 A-\mathrm{C} 6 A-\mathrm{C} 10 A-\mathrm{C} 11 A$	132.8 (3)	$\mathrm{C} 7 B-\mathrm{C} 6 B-\mathrm{C} 10 B-\mathrm{C} 11 B$	127.1 (3)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 A-\mathrm{H} 4 A A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	1.00	2.56	$3.230(4)$	124
$\mathrm{C} 6 A-\mathrm{H} 6 A A \cdots \mathrm{O} 1 A^{\text {ii }}$	1.00	2.55	$3.452(4)$	150
$\mathrm{C} 6 B-\mathrm{H} 6 B A \cdots \mathrm{O} 1 B^{\text {iii }}$	1.00	2.54	$3.395(4)$	144

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $x+1, y, z$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $1.00 \AA$. They were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before refinement. Although we do not have direct proof of the absolute stereochemistry, it has been tentatively assigned by analogy with the [2.2.1] systems (Lautens et al., 2002) and the absolute configuration of a related thiophenyl tetralin, 2-methoxy- N-[2-(3-thienyl)-1,2,3,4-tetrahydro-1-naphthyl]acetamide (Dockendorff et al., 2006).

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL/PC

organic papers

(Sheldrick, 2001); molecular graphics: $S H E L X T L / P C$; software used to prepare material for publication: SHELXTL/PC.

The authors acknowledge NSERC and the University of Toronto for funding.

References

Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Gualiardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Dockendorff, C. (2006). PhD thesis, Department of Chemistry, University of Toronto, Canada
Dockendorff, C., Lautens, M. \& Lough, A. J. (2006). Acta Cryst. E62, o6390641.

Lautens, M. \& Bouchain, G. (2002). Org. Synth. 79, 251-256.
Lautens, M., Dockendorff, C., Fagnou, K. \& Malicki, A. (2002). Org. Lett. 4, 1311-1314.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands
Oguma, K., Miura, M., Satoh, T. \& Nomura, M. (2000). J. Am. Chem. Soc. 122, 10464-10465.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1 Windows NT Version. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

